RINCIPLES OF OPERATING SYSTEMS

LECTURE 20
OPERATING SYSTEMS

File System Implementation

FILE ALLOCATION METHODS

ALLOCATION METHODS

An allocation method refers to
how disk blocks are allocated
for files:

Contiguous allocation

Linked allocation

Indexed allocation

directory

file start end
jeep 9 25

8] pO1of211]
12[J13[014[115[]
16[J17[118[119[]
2052125235
24[125F1[26[127]

28[_J29[J3o[]31[]

ALLOCATION METHODS

An allocation method refers to
how disk blocks are allocated
for files:

directory

file index block
jeep 19
1

Contiguous allocation

Linked allocation

24 125[|26 1270]
Indexed allocation 2820 30J310]

CONTIGUOUS ALLOCATION

Each file occupies a set of contiguous blocks on the
disk

Simple — only starting location (block #) and length
(number of blocks) are required

Random and sequential access are possible

CONTIGUOUS ALLOCATION

Wasteful of space (dynamic storage-allocation

problem) external fragmentation. (first fit, best fit and
worst fit)

First fit — first hole big enough for the file

Best fit — smallest hole big enough for the file
Worst fit — biggest hole for the file

Solution: Compaction = time consuming.

CONTIGUOUS
ALLOCATION OF DISK

SPACE |
/_\ directory
e _

count file start length
mmi| o | 3[| count 0)
f tr 14 3
4L) s el] 7L mail 19 6
sl] o[Ho[111[] list 28 4
tr f 6 2
12[1130] ks
16[]17[]18[]19[]
mail
ol Il 2 el
24[1250 126 127[]
list
Zel2oisoEsi
~. x

LINKED ALLOCATION

Each file is a linked list of disk blocks: blocks may be scattered anywhere on
the disk. Directory contains a pointer to the first and the last block of the file.

LINKED ALLOCATION

File header points to 1st block on disk
Each block points to next

Example:
 FAT (MS-DOS)
Pros

e Can grow files dynamically

» Space efficient, No external fragmentation but little internal
fragmentation

cons

« Random/direct access: horrible

 unreliable: if pointer was damaged or lost, losing a block
means losing the rest

* Need some bytes to store pointers

LINKED ALLOCATION

; ™~ directory

w file start end

jeep 9 25

12 1314/ 115
161718]19[]
2052125235
24 _125[-1j26[127]
28]29[J30[]31[]
~ -

LINKED ALLOCATION

User directory

Location

FILE-ALLOCATION

TAB

directory entry

test

name

| 217 |—
start block
0
——» 217
339
618

no. of disk blocks —1

618

339

FAT

FILE-ALLOCATION TABLE

Block allocation table

L [0] 22
User directory 1 Mol
= 3 2 =
File Location = 5
Y a8 £ 9
= c = 20 -\1
[10
"z 2) Free
3 17
Q 1
10 14
11 Free
12 3
12 £
12 (o]
15 Free
s Free
1+ 12
18 12
19 Ml
20 23 -
21 Free
22 182
23 19
249 Free
2 Free
26 Mol
27 Free

Physical blocks on secondary storage

Block O Block 1 Block 2 Block 3 Block 4 Block S Block &
B({a) B{10) (1) A1) B(8) C(2) B{1)
Block 7 Block & Block 9 Block 10 Block 11 Block 12 Block 12
Free A1) B(2) B(2) Fres A2 B({7)
Block 14 Block 15 Block 16 Block 17 Block 18 Block 19 Block 20
B{(3) Free Free S2) B (&) C(5) C(3)
Block 21 Block 22 Block 23 Block 24 Block 25 Block 26 Block 27
Fres B({5) C (A Free Frea AlS) Free

FILE-ALLOCATION
TABLE

Used in MS-DOS and OS/2

A section of disk at the beginning of each partition contains the
FAT

FILE-ALLOCATION
TABLE

1. FAT has one entry for each disk block

2. Directory entry for the file contains the first
block number

3. The table entry for the first block number
Indicates the next block number of the file

4. Unused blocks are indicated by O table value

INDEXED ALLOCATION

Brings all pointers together into the index
block.

EXAMPLE OF INDEXED

ALL

o[] 1
4] 5[] 7[]

8[] 9{%1D
12]13[]14

20 J21[J22 23D
24[J25[J26[127]

2[] 3[]

directory
file index block
Jeep 19

28 129[J30[]31[]
./

INDEXED ALLOCATION

Solves external fragmentation
Supports sequential and direct access

Access requires at most one access to index
block first.

File can be extended by rewriting a few blocks
and index block

Requires extra space for index block, possible
wasted space.

